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Stopping power of nonideal, partially ionized plasmas
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The stopping power of strongly coupled, partially ionized plasmas is investigated for charged beam particles
with arbitrary velocities. Our approach is based on kinetic equations of the Boltzmann type that are suitably
generalized to describe three-particle collisions. In this way, we consider elastic collisions between the beam
and free plasma particles as well as the ionization and excitation of composite plasma particles by beam
particle impact. Explicit expressions for both contributions are given in terms of the momentum transfer cross
section that has been generalized for three-particle collisions. For fast beam particles, we obtain a generalized
Bethe formula that includes correction terms due to the nonideality of the target plasma. Results are shown for
hydrogen, carbon, and argon plasmas. Considerable modifications compared to the ideal behavior arise for
strongly coupled plasmas. In particular, we are able to describe the Mott transition in the stopping power of
dense, partially ionized plasmas.
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I. INTRODUCTION

Beam-matter interaction experiments are one of the
tools to investigate the properties of dense plasmas. One
of interest is the creation and heating of plasmas. Here,
cial focus is directed to inertial confinement fusion relat
topics, e.g., to the properties in heavy ion fusion conver
@1,2#, to a-particle heating in the fusion core@3,4#, and to
fast ignition by proton beams@5#. Furthermore, heavy ion
beams can be used to produce cold, dense plasmas for e
tion of state investigations@6,7#. To guide and to interpre
these experiments, a precise knowledge of the energy los
charged particles traveling through strongly coupled plasm
is needed. The diagnostics of dense plasmas@8,9# is another
important application of particle beams where an exact
scription of the stopping power is required.

Except high-temperature hydrogen plasmas, most of
target plasmas under consideration in these experiments
applications are partially ionized. Therefore, descriptions
both the contribution due to the free plasma particles and
one due to the bound electrons or composite particles hav
be considered.

In recent years much theoretical work has been don
model the interaction between beam ions and free pla
particles in nonideal plasmas. For instance, local field cor
tions @10#, density functional theory@11,12#, the force auto-
correlation function@13#, the nonlinear system of Vlasov
Poisson equations@14#, kinetic equations beyond the Bor
approximation@15–17#, and computer simulations@18,19#
have been applied. In these investigations, special atten
was paid to strong beam ion-plasma electron correlatio
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Furthermore, the energy loss of correlated beam ions
well as cluster ion beams was investigated~see, e.g.,
Refs.@20,21#!.

Although the first calculations for the stopping pow
were done for gas targets@22–24#, much less theoretica
work has been done for the bound state contribution
plasma targets. Most of the approaches result in a modi
Bethe formula that is generalized for multiply charg
plasma ions~see, e.g.,@25–27#!. For weakly coupled plasma
and fast ion beams, this formula is in good agreement w
experimental data@8,28#, however, deviations arise fo
higher particle densities@29#. A modified Bethe formula has
been also derived for the energy loss of electron beam
dense plasmas@30#.

In this paper, we pay special attention to the bound el
tron contribution. For this purpose, we utilize kinetic equ
tions of the Boltzmann type including three-particle col
sions @31,32#. This approach is particularly advantageo
because it allows the inclusion of all relevant two- and thr
particle scattering processes in a systematic way. The con
ered kinetic equations also include strong coupling effects
the lowering of the ionization energy and medium effects
the cross sections@33,34#. Furthermore, no approximation
concerning the beam particle velocity are necessary.

To give a general insight into this approach, a brief d
cussion of the kinetic equations is given in Sec. II. On t
basis, we derive explicit expressions for the ionization, ex
tation, and deexcitation contributions to the stopping pow
in Sec. III. Furthermore, a description of the calculation
the ionization and excitation cross sections, which are
main input quantities, is given in this section. The free el
tron contribution is addressed in the next section. For t
contribution, we use a scheme that considers close collis
as well as dynamic screening effects@16,17#. Results for
©2002 The American Physical Society06-1
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strongly coupled hydrogen plasmas are given in Sec. V
The effect of the plasma composition on the stopping po
of carbon plasmas is investigated in Sec. V B. Furthermor
comparison with experimental data for an argon plasma
shown.

II. KINETIC EQUATIONS FOR PARTIALLY IONIZED
PLASMAS

Before we turn to the calculation of the stopping pow
let us briefly discuss our approach to the properties of p
tially ionized plasmas. We employ the so-called chemi
picture, i.e., the basic elements of our analysis are free e
trons, free ions, and composite particles. The latter can
atoms or ions. Applying the kinetic description, the prop
ties of the system can be expressed in terms of the distr
tion functions for free carriersf a(p,t) and composite par
ticles ~two-particle bound states! F j (P,t), where the index
‘‘ j’’ denotes a complete set of internal quantum numbe
These distributions are normalized as follows:

na5E dp

~2p\!3 f a~p,t ! and nj5E dP

~2p\!3 F j~P,t !.

~1!

Here, na is the free carrier number density of the spec
‘‘ a,’’ and nj is the number density of the composite partic
in the stateu j&. The total density of bound states is given
nb5S jnj . Then it holds for the total electron densit
ne

tot5ne1nb.
To describe the balance between the different species,

has to consider the possibility of reactions between the
ticles, e.g., ionization and recombination

e1 i 1~Z11!⇔ i 1Z, ~2!

and inelastic processes changing only the internal state~ex-
citation and deexcitation!. It is well known that energy and
momentum conservation in such inelastic scattering p
cesses require at least three particles. Therefore, one h
go beyond the usually used binary collision approximation
order to describe partially ionized plasmas including su
inelastic processes.

The time evolution of the free and bound particle dist
bution has to be determined by a set of appropriate kin
03640
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equations that account for all relevant two- and three-part
processes. Furthermore, the influence of the surrounding
dium on the scattering processes has to be included in
case of strongly coupled plasmas. Kinetic equations con
ering inelastic scattering processes as well as many-par
effects were derived in the frame of density operator form
ism @35–38# and using the technique of nonequilibriu
Green’s functions@31,39–41#. The latter approach is base
on a cluster expansion of the two-particle Green’s funct
including self-energies and phase space occupation effe

The result is a generalized Boltzmann equation contain
additional three-particle collision integrals. Due to th
screening of the Coulomb potential, the effective interact
in dense plasmas is short ranged. Therefore, kinetic eq
tions of the Boltzmann type can be applied also for partia
ionized plasmas@40,41#. In the case of homogeneous an
isotropic plasmas, the resulting kinetic equation for the f
carriers reads

]

]t
f a~p,t !5(

b
I ab~p,t !1(

bc
I abc~p,t !. ~3!

For inhomogeneous or anisotropic plasmas, the left-h
side ~lhs! has to be replaced by the well-known drift term

The right-hand side~rhs! of Eq. ~3! contains the different
collision terms. The first term describes the scattering of t
free carriers. Depending on the applied approximat
scheme, it is given, e.g., by the collision integral of t
Lenard-Balescu@42,43# or Boltzmann kinetic equations@44#.
The second sum on the rhs includes the different thr
particle scattering processes. Considering a nondegen
plasma, this three-particle collision integral is given
@31,36#

TABLE I. Definitions of multichannel scattering theory for th
different types of three-particle collisions: channel indexk,
asymptotic statesuka&, differentials, three-particle energies, and t
set of distribution functions in the considered channel.

k uka& d(ka) Eabc
k f k(ka)

0 upa&upb&upc& dpadpbdpc Ea1Eb1Ec f a(pa) f b(pb) f c(pc)
1 upa&uPbcj & dpadPbc Ea1Ebc f a(pa)F j (Pbc)
2 upb&uPacj & dpbdPac Eb1Eac f b(pb)F j (Pac)
3 upc&uPabj & dpcdPab Ec1Eab f c(pc)F j (Pab)
I abc~pa ,t !5
1

V\ (
b,c

(
k
E dpb

~2p\!3

dpc

~2p\!3 d~kā !u^pau^pbu^pcuTabc
0k ukā&u2

32pd~Eabc
0 2Ēabc

k !$ f k~kā,t !2 f a~pa ,t ! f b~pb ,t ! f c~pc ,t !%

1
1

V\ (
b,c

(
k

E dPbc

~2p\!3 d~kā !upau^Pbcj uTabc
1k ukā&u2

32pd~Eabc
1 2Ēabc

k !$ f k~kā,t !2 f a~pa ,t !F j~Pbc ,t !%. ~4!
6-2
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In this expression, we used the notations of multichan
scattering theory that are explained in Table I~see also Refs
@45,46#!. The index ‘‘k’’ denotes the scattering channel th
corresponds to the channel stateukā&. In this way, the sum-
mation overk accounts for all kinds of scattering process
the first main term describes all processes with three
particles in the incoming channel~e.g., three-particle recom
bination! whereas the second one considers all proce
with one bound and one free particle in the incoming chan
~e.g., impact ionization!.

Eabc
k are the quasiparticle energies for three particles

the channelk that are explained in Table I. For the one- a
two-particle energies mentioned in this table, we have

Ea5
pa

2

2ma
1Da ~5!

and

Eab5
Pab

2

2Mab
1Ej1Dab

j . ~6!

In the latter definition,Ej denotes the binding energy of a
isolated stateu j&. The influence of the surrounding medium
reflected by the energy shiftsDa andDab

j . In order to sim-
plify the calculation, momentum independent shifts in rig
shift approximation@47# are used frequently. In this approx
mation, the energy shifts can be identified with the corre
tion part of the chemical potentialm, i.e.,m5m ideal1D. As-
suming statically screened Coulomb interactions, the sh
are given in lowest order in the density by

Da~ t !52
Zae2k~ t !

2
. ~7!

Here, k254pe2ScZc
2nc /kBT is the ~local! inverse Debye

screening length. However, one has to go beyond appr
mation ~7! for strongly coupled systems. In this case, mo
sophisticated approximations have to be applied@48#.

The transition probabilities from a given channelk to an
outgoing channelk̄ are described by the retarded thre

particle T matricesTabc
kk̄ , where the energy arguments a

fixed on the energy shell of the considered scattering proc
TheseT matrices obey the following Lippmann-Schwing
equation~operator notation! @39,45#:

Tabc
kk̄ ~v!5Vabc

k 1Vabc
k Gabc

R ~v!Vabc
k̄ , ~8!

whereGabc
R 5(v2Habc

0 2Vabc
0 1 i e)21 is the retarded three

particle Green’s function, andHabc
0 is the effective free

three-particle Hamiltonian including self-energy effects v
the energy shifts. The channel potentialsVabc

k are given in
terms of the effective~screened! two-particle interaction po-
tential Vab ,

Vabc
0 5Vab1Vac1Vbc , ~9!

Vabc
1 5Vab1Vac , ~10!
03640
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However, Eq.~3! for the free carrier distribution is no

closed. Furthermore, an equation for the distribution of
composite particlesF j (Pab ,t) is needed to describe the tim
evolution of a partially ionized plasma. For homogeneo
and isotropic systems, this kinetic equation reads@39,41#

]

]t
F j~Pab ,t !5(

c
I abc

j ~Pab ,t !. ~11!

Pab denotes here the total momentum of the composite p
ticle ‘‘ ~ab!.’’ For inhomogeneous and anisotropic system
the lhs of Eq.~11! has to be replaced by the drift term for
two-particle complex. The rhs is a collision integral that d
scribes the interaction of a bound particle complex with
free carrier. For nondegenerate systems, we have for
collision integral

I abc
j ~Pab ,t !5

1

V\ (
c,k

E dpc d~kā !

~2p\!3 2pd~Eabc
3 2Ēabc

k !

3u^pcPabj uTabc
3k ukā&u2

3$ f k~kā,t !2F j~Pab ,t ! f c~pc ,t !%. ~12!

The notation of multichannel scattering theory is used h
again~see Table I!. The index ‘‘c’’ denotes a species of free
plasma particles scattering with the bound complex.

The system of equations~3! and ~11! with the collision
integrals~4! and~12! allows the description of partially ion
ized plasmas considering the following scattering proces
elastic two- and three-particle collisions, elastic carri
bound state collisions, rearrangement processes, impact
ization by free carriers, three-particle recombination, and
citation and deexcitation due to particle impact.

Furthermore, this system considers dense plasma eff
included in the quasiparticle energies and in the thr

particle T matricesTabc
kk̄ . Therefore, the presented kinet

equations are an appropriate basis to derive expression
the stopping power of partially ionized plasmas includi
many-particle effects.

III. BOUND STATE CONTRIBUTION TO THE STOPPING
POWER

In this paper, we investigate the energy loss of beam p
ticles with a fixed beam charge numberZb neglecting their
inner structure. That means, that we do not consider the e
lution of the beam particle charge. This approximation
appropriate for short times and in the case of beams con
ing of electrons, protons, and fast nuclei of light elemen
where the beam charge number remains almost cons
However, the stopping power of heavy ions can also be
scribed in many cases considering the~velocity dependent!
equilibrium charge state of the considered beam particle s
cies @49#.

For the beam particle distributionf b , we use a delta-
function-like distribution in momentum space,

f b~p!5~2p\!3nbd~p2mbv!, ~13!
6-3
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wherev, mb , andnb denote the beam particle velocity, mas
and density, respectively@50#. The stopping power, i.e.
]^E&/]x ~where thex direction is considered to be parallel
the beam particle velocityv!, is then determined by the
change of beam particle momentum per unit time.

Considering a homogeneous and isotropic target pla
@51# and low-density beams, i.e., neglecting intrabeam s
tering and beam particle-beam particle correlations, we
tain for the stopping power of a partially ionized plasma

]

]x
^E&5

1

nb
(

c
E dp

~2p\!3

~p•v!

v
I bc~p!

1
1

nb
(
cd

E dp

~2p\!3

~p•v!

v
I b~cd!~p!. ~14!

Here, the sums run over all elementary plasma species,
electrons and the different ion species. Expression~14! con-
siders all kinds of two- and three-particle processes that
included in the collision integralsI bc and I b(cd) , respec-
tively. The bound state contributions are given by the sec
term. We consider only reactions in which the beam cha
number remains constant, i.e., the beam particles enter
leave the scattering processes as free particles.

A. Ionization of plasma particles

The ionization of bound plasma particles by beam part
impact is described by two different terms of the thre
an
o

re

tt

ll
a

b
ee
e
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particle collision integral~4!: The first one@k50 in the sec-
ond sum of Eq.~4!# is characterized by the set of distribu
tions f b(p)F j (Pei) and theT matrix Tb(ei)

10 . The second one
is given byk51 in the first sum of Eq.~4!, i.e., by the set of

distributionsf 1(kā)5 f b(p̄)F j (P̄ei) and theT matrix Tb(ei)
01 .

Alternatively, the transition probability for the considere
processes can be described by the three-particleT matrix
Tb(ei)

11 . However, the outcoming state includes a correla
scattering state of the ionized particle in this case@52#,

^pu^ j PeiuTb~ei!
10 up̄i&up̄e&up̄&5^pu^ j PeiuTb~ei!

11 uP̄eip̄e1&up̄&.
~15!

Due to the large mass ratio of ions and electrons, i
mi /me@1, the argument of the ion distribution is then give
by the center of mass momentumPei , and the one for the
electrons by the relative momentumpe .

The corresponding terms describing beam particle
sisted recombination are proportional to three free part
distributions and can be neglected. With the beam part
distribution ~13!, we then obtain for the ionization contribu
tion of the stopping power
]

]x
^E& ion5

~2p\!6

V\ (
j

E dPei

~2p\!3

dp

~2p\!3

dP̄ei

~2p\!3

dp̄

~2p\!3

dpe

~2p\!3

~p•v!

v

3$d~Eb~ei!
0 2Ēb~ei!, j

1 !u^pu^1pePeiuTb~ei!
11 uP̄ei j &up̄&u2d~ p̄2mbv!F j~P̄ei!

2d~Eb~ei!, j
1 2Ēb~ei!

0 !u^pu^ j PeiuTb~ei!
11 uP̄eipe1&up̄&u2d~p2mbv!F j~Pei!%. ~16!
We want to consider arbitrary mass ratios of plasma
beam ions. Therefore, it is appropriate to transform the m
menta in Eq.~16! into Jacobi variables. These variables a
defined by the following relations:

K5p1Pei and k5p2
mb

Mb~ei!
K , ~17!

where we have introduced the total mass of the three sca
ing particlesMb(ei)5mb1mi1me . The Jacobi coordinateK
is the center of mass momentum of the three-particle co
sion, andk is the relative momentum between the beam p
ticle and the bound state ‘‘~ei!.’’ Due to the large mass ratio
of ions and electrons, the third Jacobi momentum is given
the momentum of the ejected electron. We, therefore, k
the notationpe . In the further analysis, we will also use th
total mass of the plasma particlesMei5mi1me and the two
reduced massesmb5mbMei /Mb(ei) andmei5memi /Mei .
d
-

er-

i-
r-

y
p

For the three-particleT matricesTb(ei)
11 , we now obtain

the relation

u^pu^ j PuTb~ei!
11 uP̄p̄e1&up̄&u25~2p\!3Vd~K

2K̄ !u^ku^ j uTb~ei!
11 up̄e1&uk̄&u2

~18!

and for the three-particle energies, it holds

Eb~ei! j

1 5
K2

2Mb~ei!
1

k2

2mb
1Ej1Db1D j , ~19!

Eb~ei!
0 5

K2

2Mb~ei!
1

k2

2mb
1

pe
2

2mei
1Db1D i1De. ~20!
6-4
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STOPPING POWER OF NONIDEAL, PARTIALLY . . . PHYSICAL REVIEW E65 036406
Again, Ej is the binding energy of the isolated two-partic
bound state. Considering the arguments in the energy
servingd function, it is useful to introduce the effective ion
ization energy of the bound stateu j&. This quantity is defined
by

I j
eff5uEj u1De1D i2D j . ~21!

Furthermore, it is convenient to define an auxiliary functi
gb by

gb
25k22

mb

mei
pe

222mbI j
eff , ~22!

and to transform the momentum vectorsk and k̄ into polar
coordinates. Therefore, we introduce the following ang
/(k,k̄)5u, /(pb ,k)5u1 , and /(pb ,k̄)5u2 and abbre-
viations cosu 5x, cosu15x1, and cosu25x2. These angles
are not independent; they are connected by the w
known relation of spherical trigonometryx25xx1
1sinu sinu1 cosfx .

Considering the conservation of total momentum and
expression~13! for the beam particle distribution, theK and
the K̄ integration can be performed easily. By utilizing al
the energy conservation to perform thek̄ integration, we get
for the stopping power the following intermediate result:

]

]x
^E& ion5

1

~2p!4\7

Mei
3

mb
2 E

0

`

dk k2E
21

1

dx1 x1

3F j S Meiv2
Mb~ei!k

mb
D

3E
0

`

dpe pe
2E dVpeE

21

1

dx gb

3~k2gbx!u^ku^ j uTb~ei!
11 upe1&uk̄&u2. ~23!

Here, the modulus of the momentumk̄ is given by the func-
tion gb , i.e., uk̄u5gb . Following the usual definition of the
total ionization cross section@53#, we now define the mo-
mentum transfer or transport cross section of ionization

Qj
ion~k!5

mb
2gb

~2p!2\4k E0

`

dpe pe
2E dVpeE

21

1

dx

3S 12x
gb

k D u^ku^ j uTb~ei!
11 up̄e1&uk̄&u2. ~24!

As we consider a nondegenerate target plasma in local t
mal equilibrium, the distribution of bound plasma particles
given by the Boltzmann distribution. Therefore, thex1 inte-
gration can be performed analytically, too. As the final res
for the ionization contribution of the stopping power, w
then obtain
03640
n-
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e
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]

]x
^E& ion52(

j

Mei
2

mb
3

njLei
3

~2p!2\3

kBT

v E
0

`

dk k3Qj
ion~k!

3H p2 expS 2
Meiv

2

2kBT D2p1 expS 2
Meiv1

2

2kBT D J .

~25!

Here, we have introduced the following abbreviations:p6

516(mbkBT)/(Meikv) and v65k/mb6v. Furthermore,
Lei5(2p\2/MeikBT)1/2 is the thermal wavelength of th
composite plasma particles.

Expression~25! gives the stopping power due to the io
ization of plasma particles in terms of the transport cro
section of ionization. It has the same structure as the exp
sion for the stopping power of fully ionized plasmas assu
ing statically screened interactions~see also Sec. IV!. The
different scattering processes are reflected by the diffe
types of transport cross sections.

B. Excitation and deexcitation of plasma particles

Excitation and deexcitation processes as well as ela
collisions of beam particles with composite plasma partic
are described by collision integrals that are characterized
a composite plasma particle in the input and output chan
@k51 term in the second sum of Eq.~4!#. The derivation of
corresponding expressions for the stopping power is sim
to the one shown in the previous section for the ionizat
contribution. However, we now have to introduce the tra
port cross section of~de!excitation:

Qj j 8
ex

~k!5
mb

2gb

~2p!2\4k E21

1

dxS 12x
gb

k D
3u^ku^ j uTb~ei!

11 u j 8&uk̄&u2. ~26!

The indices ‘‘j’’ and ‘‘ j 8’’ denote the internal quantum num
bers of the incoming and the final state, respectively. Exc
tions of plasma particles are determined by the relat
Ej,Ej 8 , whereas for deexcitationsEj.Ej 8 holds. The
transport cross section for elastic three-particle collisions
the same form but withj 5 j 8.

Due to the different energy levels, we have to account
the fact that the excitation and deexcitation contributio
have the opposite sign. Indeed, excitations of compo
plasma particles reduce the beam energy while deexcitat
deliver energy to the beam particles. Finally, we obtain
the contribution of the stopping power, which is due to e
citation of composite plasma particles,

]

]x
^E&ex52 (

Ei,Ej 8

Mei
2

mb
3

njLei
3

~2p!2\3

kBT

v E
0

`

dk k3Qj j 8
ex

~k!

3H p2 expS 2
Meiv2

2

2kBT D 2p1 expS 2
Meiv1

2

2kBT D J ,

~27!
6-5
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where the same abbreviations are used as in Eq.~25!. The
deexcitation contribution has the opposite sign and the s
runs in this case over all states withEj.Ej 8 . For the con-
tribution due to the elastic scattering of the beam part
with a composite plasma particle and analogous expres
can be obtained.

C. Limit of high beam particle velocities

In this section, we consider the contribution of thre
particle collisions to the stopping power in the case of v
energetic beam particles. First, we will focus on the ioni
tion contribution. Our starting point is Eq.~23! but consid-
erable simplification arise for fast beam particles. In t
case, the relative momenta between the beam particle an
composite plasma particle before as well as after the c
sion, i.e.,k and k̄, are large compared to the momentu
transfer defined byq5k2 k̄. Therefore, the scattering ang
u is very small (cosu 5x'1), too. Furthermore, we can as
sume that the energy of the ejected electron is small c
pared to the sum of kinetic beam and ionization energ
With the definition of the auxiliary functiongb ~22!, then, it
follows that

k2gbx'k2gb , ~28!

'k2Ak222mbI j
eff, ~29!

'k21mbI j
eff . ~30!

Applying this approximation, we get for the stopping pow

]

]x
^E& ion5

1

~2p!2\3 (
j

I j
eff

Mei
3

mb
2mb

E
0

`

dk k

3s j
ion~k!E

21

1

dx1 x1F j S MeiFv2
k

mb
G D ,

~31!

where we have introduced the total ionization cross sect
This quantity is defined by@53#

s j
ion~k!5

mb
2gb

~2p!2\4k E0

`

dpe pe
2E dVpe

3E
21

1

dxu^ku^ j uTb~ei!
11 up̄e1&uk̄&u2. ~32!

In this definition, the modulus of the momentumk̄ is fixed
by the relationk̄5gb and, therefore, a function of the ion
ization energy. Using the equilibrium~Boltzmann! distribu-
tion for the composite plasma particles, we obtain
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]

]x
^E& ion52(

j

Mei
2

mb
2

I j
effnjLei

3

~2p!2\3

kBT

v E
0

`

dk ks j
ion~k!

3H p2 expS 2
Meiv2

2

2kBT D 2p1 expS 2
Meiv1

2

2kBT D J .

~33!

In the case of high beam velocities, the second term in
curly brackets is negligible. In the first term, only momen
with k'mbv contribute to thek integral. Furthermore, al
functions can be treated as constant~at the pointk5mbv!
compared to the strongly varying exponential. The remain
integral can be performed analytically. For the ionizati
contribution, the relation

]

]x
^E& ion52(

j
I j

effnjs j
ion~mbv ! ~34!

follows, where the sum runs over all existing bound states
composite plasma particles. From Eq.~34! we see the ex-
pected relations: the stopping power is proportional to
energy transfer per collisionI j

eff , the number density of the
bound states in the plasmanj , and the probability for an
ionization. Nonideality effects are included by the mediu
dependent ionization energiesI j

eff and cross sections j
ion .

A similar expression can be found for processes that
scribe excitation of plasma particles. Compared to Eq.~34!,
the ionization energy has to be replaced by the excita
energy and the total excitation cross sections j j

ex has to be
used in this case. Elastic collisions are negligible for hi
beam velocities. The same follows for the energy gain of
beam particles due to deexcitation of excited plasma p
ticles because, for fast beam particles, the deexcitation
cess becomes unlikely compared to an ionization of
plasma particle.

To find an explicit expression for the high velocity lim
of the stopping power, we need an analytic expression for
ionization cross section for large momenta or energies.
hydrogenlike composite particles, one can use a modi
Bethe cross section~see, e.g., Refs.@23,54#!. Comparing the
cross sections for electron and ion impact, a scaling can
found. It turns out that, for the impact of energetic particle
the ionization cross section is only a function of the relat
velocity. Furthermore, we found in the limit of large impa
energies that the cross section is proportional to the squa
the beam ion–electron interaction potential, i.e.,s j

ion;Zb
2.

Therefore, we obtain for the ionization cross section at la
impact energy

s j
ion~k!58paB

2Zb
2 uEj u
mek

2/2mb
2 lnS 2mek

2/mb
2

uEj u
D , ~35!

whereuEj u is the ionization energy of an isolated two-partic
bound state. In contrast to the modified Bethe-Biberma
cross section suggested in Refs.@53,54#, we neglect here the
energy shifts in the logarithm because these terms are n
gible for large impact energies.
6-6
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Inserting the cross section~35! in Eq. ~34!, we obtain a
generalized version of the Bethe formula for the ionizat
contribution of a hydrogenlike bound state. This express
is, in contrast to the original Bethe formula@23#, also valid in
the regime of strongly correlated plasmas,

]

]x
^E& ion5216paB

2Zb
2(

j

nj I j
effuEj u

mev
2 lnS 2mev

2

uEj u
D . ~36!

An analogous expression follows for the excitation contrib
tion. The major nonideality effect on the stopping power
the high velocity limit is condensed in effective ionizatio
energyI j

eff . As this quantity is always smaller than the ide
ionization energy, the ionization contribution to the stoppi
power of a strongly coupled plasma is reduced compare
the one of a weakly coupled plasma with the same num
density.

For target atoms or ions having more than one bou
electron, we use the Bethe cross section@23#. For high im-
pact energies, this cross section is proportional to the num
of bound electrons. Therefore, we obtain for the stopp
power of an ideal plasma

]

]x
^E& ion5

24pZb
2e4

mev
2 (

Z50

Zn

~Zc2Z!nZ lnS 2mev
2

uEZu D .

~37!

Here,Zc denotes the nuclear charge of the considered ta
species,nZ is the number density, andEZ is the ionization
energy of a~isolated! Z-fold charged ion. A similar formula
was also found by Peter and Ka¨rcher@27# for weakly coupled
plasmas. It should be mentioned that Eq.~37! was success
fully used to describe the energy loss of ions in wea
coupled, partially ionized plasmas with free electron den
ties ne,1019 cm23 @8,9,28#. In a strongly coupled plasma
the reduction of the ionization energy, which is the ma
medium effect, can be included approximately by a fac
I Z

eff/uEZu in every term of the sum.

D. Ionization and excitation cross section

We have shown in the previous sections that the ion
tion and excitation cross sections are the essential in
quantities for the bound state contributions to the stopp
power of partially ionized plasmas. In the case of very f
beam particles, the total ionization and excitation cross s
tions are needed for large impact energies and, therefo
modified Bethe cross section could be utilized in Sec. III
In the general case, we have to start from Eqs.~25! and~27!.
There, the transport cross sections of ionization and exc
tion are needed. These quantities are given in terms of
three-particleT-matricesTb(ei)

11 according to the definitions
~24! and ~26!.

As the solution of the effective three-body problem is
very difficult task, we apply here a Born approximatio
regarding the beam particle-plasma interaction, i
Tb(ei)

11 5Vbe1Vbi , but describing the output channel by
correlated scattering stateup̄e1&. Using this approximation
we obtain for the transport cross section of ionization
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Qj
ion~k!5

mb
2

~2p!2\4k2 E
0

pmax
dpe pe

2E
q2

q1

dq qE dVpe

3S 12
k21qb

22q2

2k2 D uVbe~q!Pj ,pe
~q!u2. ~38!

Here, the integration over the scattering angle has been tr
formed to an integration over the momentum exchangeq.
The limits of theq integration are given by the relationq6

5k6 k̄. The maximum momentum of the ejected electr
follows from the energy conservation:pmax5(mek

2/mb

22meI j
eff)1/2. Furthermore, one has to consider that the mo

lus of k̄ is given by the auxiliary functiongb @see definition
~22!#.

In Eq. ~38!, dense plasma effects are taken into acco
by the statically screened beam particle-plasma electron
teraction potentialVbe(q)54pZbe2/(k21q2/\2), by an ef-
fective atomic form factorPj ,pei

, and the effective ionization

energy I j
eff . Considering the large mass difference of ele

trons and ions, the atomic form factor is given by

Pj ,pe
~q!5E dr C j* ~r !Cpe

~r !expS 2
i

\
r•qD , ~39!

whereC j (r ) andCpe
(r ) are the wave functions of the two

particle bound and scattering states determined by the Sc¨-
dinger equation with a statically screened interaction pot
tial @33#.

For the numerical evaluation, it is more convenient to u
the angle integrated atomic form factors that are defined

F ~n,l !,pe
~q!5pe

2E dVpe
uPj ,pe

~q!u2. ~40!

The bound state is here characterized by the main quan
numbern and the angular quantum numberl. For a numeri-
cal evaluation of Eq.~40!, we apply a partial wave expansio
and get for the form factor

F ~n,l !,pe
~q!5

1

k2 (
l 8,l 950

` S l 8 l 9 l

0 0 0D S l 8 l 9 l

0 0 0D
3~2l 811!~2l 911!I ~n,l !pe

l 8,l 9 ~q!, ~41!

where (0 0 0
l8l9 l ) is a special Wigner 3-j symbol @55#. The quan-

tity I (n,l ),pe

l 8,l 9 (q) is given by

I ~n,l !,pe

l 8,l 9 ~q!5F E
0

`

dr un,l~r !upe,l 8~r ! j l 9~qr/\!G2

, ~42!

wherej l(x) denotes the spherical Bessel function andun,l(r )
and upe ,l 8(r ) are the radial wave functions for bound an
scattering states, respectively. We computed these w
functions by numerical solution of the radial Schro¨dinger
equation with a statically screened Coulomb potential a
self-energy shifts in Debye approximation~see, e.g.
@33,47,56#!.
6-7
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For the transport cross section of excitation, we obtain
the Born approximation

Qj , j 8
ex

~k!5
mb

2

~2p!2\4k2 E
q2

q1

dq q

3S 12
k21qb

22q2

2k2 D uVbe~q!Pj , j 8~q!u2. ~43!

Again, the limits of integration are given byq65k6 k̄, but
the modulus of the momentumk̄ is now given byk̄25k2

22mbI j
eff12mbI j8

eff . The corresponding atomic form factor fo
plasma particle excitation reads

Pj , j 8~q!5d j , j 81E dr C j* ~r !C j 8~r !expS 2
i

\
r•qD .

~44!

Numerical results for the transport cross section of ioni
tion are plotted in Fig. 1 for different screening paramete
Here, the ionization of a hydrogen atom by proton impac
considered. The data fork50 are related to the Coulom
case or the weakly coupled high-temperature limit. Qual
tively, we find similar results as they were found for the to
ionization cross section@33#: increasing screening length
result in ~i! a shift of the ionization threshold and of th
maximum of the cross section to smaller wave vectors;~ii !
an enhancement of the cross section in the region around
maximum; and~iii ! a decrease of the cross section for lar
wave vectorsk. The first and the second points are related
the lowering of the ionization energy with increasing scre
ing length. Therefore, ionization requires less energy an
more likely. Compared to the screening effects in the cas
electron impact@33#, we observe here a much larger e
hancement of the cross section. For large wave vectors
weakening of the interaction potential by screening is
dominant effect, which gives rise to the opposite trend, i.e
decreasing of the cross section.

FIG. 1. Transport cross section of ionizationQion(k) versus
wave numberk5p/\ for different screening parametersk. The
considered process is the ionization of a hydrogen atom in
ground state by proton impact.
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IV. FREE PARTICLE CONTRIBUTION TO THE
STOPPING POWER

To calculate the free particle contribution, we have to co
sider the first term on the rhs of Eq.~14!. Elastic three-
particle collisions are negligible. Depending on the beam
locity and the plasma parameters different effects
significant and, therefore, different approximation schem
for the two-particle collision integrals are appropriate.

In the important case of fast beam particles, dynam
screening effects and collective plasma excitation have to
included into the theory. These effects can be treated wi
the so-calledVS approximation@16#. Therefore, we have to
apply the collision integral of the Lenard-Balescu equat
@42,43# in Eq. ~14!. The resulting expression for the stoppin
power reads@17#

]

]x
^E&RPA

free5
2Zb

2e2

pv2 E
0

` dk

k E
~\k2/2mb!2kv

~\k2/2mb!1kv
dv

3Fv2
\k2

2mb
G Im «21~k,v!nB~v!. ~45!

In this approximation, the stopping power is given in term
of the imaginary part of the inverse dielectric function«21

and the Bose functionnB5@exp(\v/kBT)21#21 that repre-
sents the plasmon distribution. The dielectric function will
calculated here in random phase approximation~RPA!. In the
limit of very fast beam particles, the following formula ca
be obtained from Eq.~45!:

lim
v→`

]

]x
^E& free52

Zb
2e2vpl

2

v2 lnS 2mev
2

\vpl
D . ~46!

Here,vpl
2 54pe2Scnc /mc denotes the square of the plasm

frequency.
On the other hand, strong beam-plasma correlations

important for slow beam particles and strongly correla
plasmas. An appropriate approximation to describe th
strong coupling effects is based on theT-matrix approxima-
tion for the collision integral of the quantum Boltzman
equation@44#. The corresponding expression for the stoppi
power is given in terms of the transport cross section
two-particle scatteringQbc

T @17#,

]

]x
^E&T-matrix

free 52(
c

mc
2

mbc
3

neLe
3

~2p!2\3

kBT

v E
0

`

dk k3Qbc
T ~k!

3H p2 expS 2
mcv2

2

2kBT D 2p1 expS 2
mcv1

2

2kBT D J .

~47!

Here, mbc5mbmc /(mb1mc) is the reduced beam-plasm
particle mass. The definitions for the abbreviationsp6 and
v6 are similar to the ionization case~see Sec. III A!, but the
reduced mass and the plasma particle mass have now t
replaced bymbc andmc , respectively. The sum in Eq.~47!
runs over all free carrier species in the plasma, but excep
very slow beam particles only the free electrons have to

e

6-8
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STOPPING POWER OF NONIDEAL, PARTIALLY . . . PHYSICAL REVIEW E65 036406
considered. Dynamical screening effects are not include
the T-matrix calculation~47! because we apply a statical
screened Coulomb potential to calculated the cross sect

To incorporate both dynamic screening effects and str
beam-plasma correlations, a combined scheme for the s
ping power was proposed in Ref.@16#. This model adds the
RPA~45! andT-matrix ~47! approximations and subtracts th
static Born term to avoid double counting. In this way, t
typical failures of the Born and static approximations for lo
and high beam velocities, respectively, can be avoided.
dynamic Born approximation~45!, for instance, overesti
mates the stopping power several times forv,v th and strong
beam-plasma coupling, i.e., low temperatures and large b
charge numbers@17,57#. On the other hand, the stoppin
power is underestimated by a factor of two applying t
static approximation in the high velocity limit due to th
neglect of plasmon excitation@16#. As the combined mode
is given by theT-matrix results~47! for v→0 and by the
dynamic Born result~45! for very fast beam particles, it ha
the correct limiting behavior, which was shown by a co
parison with simulation data and experiments@17,28#. For
intermediate beam velocities, the combined model appr
mately accounts for both correlations and dynamical scre
ing effects while smoothly interpolating between the staticT
matrix and the dynamically screened Born approximatio
We therefore apply this combined scheme in this paper
the free particle contribution of the stopping power.

V. RESULTS AND DISCUSSION

A. Stopping power of partially ionized hydrogen plasma

1. Plasma composition

Beside the scattering cross sections, the plasma comp
tion is the main input quantity to calculate the stoppi
power of partially ionized plasmas. Starting from the kine
equations~3! and ~11!, rate equations for strongly couple
plasmas can be derived@33,34,53#. These equations dete
mine the time evolution of the number densities of free a
bound particles. In this paper, we consider target plasma
thermodynamic equilibrium and, therefore, the rate equati
reduce to a set of mass action laws. For a hydrogen pla
with atoms in the ground state follows

nH

nenp
5Le

3 exp~bI 0
eff!, ~48!

where b51/kBT is the inverse temperature. Followin
the definition ~21!, the effective ionization energy of th
ground state is given byI 0

eff5uE0 u1De1Dp2D0 with
E05213.6 eV being the ground state energy. The nonide
ity of the plasma is accounted for by the averaged ene
shifts Da ~rigid shift approximation!. Unfortunately, the
simple Debye shift~7! is only justified for weakly coupled
plasmas. In fact, this approximation overestimates the ef
of screening, and pressure ionization is, therefore, predi
for too low densities.

Equation ~48! describes the plasma composition det
mined by the ionization equilibrium of the reactio
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e1p⇔H. Of course, this mass action law represents a ra
simplified model to determine the plasma composition
hydrogen. In particular, at lower plasma temperatures,
formation of molecules, according to the dissociation eq
librium H1H⇔H2, has to be taken into account.

To go beyond the approximations mentioned above,
apply the model introduced in Ref.@58#. In this scheme, the
energy shifts are identified by the correlation part of t
chemical potential, i.e.,Da5ma

cor. In the derived ionization-
dissociation model, the plasma composition is determined
the following mass action laws:

nH52npbH
b exp~b@me

id1me
cor1mP

cor2mH
cor# !, ~49!

nH2
5nH

2bHH
b exp~b@mH

cor1mH
cor2mH2

cor# !. ~50!

Here, bH
b denotes the partition sum of atomic bound sta

that is approximated by the ground state contribution, i
bH

b 5exp(2bE0). bHH
b is the bound state part of the fourt

cluster coefficient for the electronic singlet state of ato
atom interaction. The contributions to the chemical poten
that are due to interactions of free charged particles are
culated from Pade´ formulas. These formulas were dete
mined on the basis of quantum statistical theory using
known limiting behavior for low and high densities as we
as Monte Carlo data@48,59#. The charged particle–neutra
scattering processes are included in terms of second clu
coefficients in first Born approximation using the optical p
tential method@60#. The contributions of neutral-neutral in
teractions are calculated in a simple manner from the M
soori formula @61# applying temperature dependent ha
sphere radii@58#. This scheme allows a qualitative descri
tion of neutral-neutral interaction in the considered tempe
ture range ofT>15 000 K. Of course, improvements a
necessary, especially in the range of lower temperatures
high densities where atoms and molecules dominate the
havior of the system. This can be done using more reali
neutral-neutral interaction potentials~see, e.g.,@62–64#!.

Results for the plasma composition of a hydrogen plas
with a temperature ofT523104 K are plotted in Fig. 2. For

FIG. 2. Plasma composition of a hydrogen plasma with a te
perature ofT523104 K as a function of the total electron densit
The quantitya i is the fraction of the different species in units of th
total electron density, i.e.,ae5ne /ne

tot , aH5nH /ne
tot , and aH2

52nH2
/ne

tot .
6-9
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D. O. GERICKE, M. SCHLANGES, AND TH. BORNATH PHYSICAL REVIEW E65 036406
low densities, we get the behavior known for weakly coup
plasmas: an almost fully ionized plasma for very low den
ties and with increasing plasma density the formation of
oms ~for ne

tot>1017 cm23! and molecules ~for ne
tot

>1021 cm23!. Nonideality effects are small up to densities
ne

tot,1021 cm23. For denser systems, the self-energy sh
reach the same magnitude as the dissociation and ioniza
energies. Therefore, the effective binding energies van
and the bound states break up. We observe here the trans
from a partially ionized to a fully ionized plasma due
pressure ionization. This behavior is known as the Mott tr
sition @48#. As a result, most particles are free carriers
ne

tot.531023 cm23. Although this behavior is quite genera
the density where the Mott transition occurs strongly var
for different approximations for the energy shiftsD. Apply-
ing, e.g., the Debye shift~7!, the Mott point occurs approxi
mately one order of magnitude earlier.

2. Stopping power

Let us first discuss the ionization contribution to the sto
ping power separately. In Fig. 3, the ionization contributi
of a hydrogen plasma is shown as a function of the be
velocity. The beam particles are protons and, therefore,
beam charge number isZb51. With the considered plasm
temperature and density, an ionization degree ofa50.74 and
a screening parameter ofk50.49aB

21 follows. Hydrogen
molecules are negligible in this case because their conce
tion is less than 1%. To test the influence of nonidea
effects and to show the limitations of the often used Be
formula, the following approximation schemes are plotted
Fig. 3: ~i! the general expression~25! with the medium de-
pendent transport cross section~38!–full line; ~ii ! the general
expression~25! with the transport cross section~38! for the
ideal case~that is k50!–dashed line;~iii ! the asymptotic
formula ~34! with the numerically calculated total ionizatio
cross section in the Born approximation~32!—dash-dotted
line; ~iv! the asymptotic result~36! where the modified Bethe
cross section~35! was utilized—dotted line.

FIG. 3. Ionization contribution to the stopping power of a h
drogen plasma for a proton beam in different approximations~see
text! versus beam particle velocity. The latter is given in units of
thermal velocity of the electron componentv th5AkBT/me. The
plasma temperature isT5105 K and the total electron density i
ne

tot55.531022 cm23.
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It is clearly visible that both asymptotic results~iii ! and
~iv! underestimate the stopping power for low beam velo
ties. Although the energy threshold for ionization is calc
lated correctly within approximation~iii !, the low-velocity
region cannot be described. However, both asymptotic
sults merge for high beam particle velocities with the gene
result ~i! that includes nonideality effects. A similar merg
follows for fast beam particles if the nonideality correctio
are neglected in all approximations~not shown!. However,
the results using ideal cross sections overestimate the en
loss in that case. This overestimation is a direct result of
neglect of screening effects, which ends up in too high cr
sections in the largek-value domain~see Fig. 1!.

Comparing the results~i! and ~ii !, one observes a shift to
lower beam velocities if nonideality effects are consider
This shift follows from the lowering of the ionization energ
For this reason, beam particles with a lower energy~velocity!
can ionize the target atoms in strongly coupled plasmas. T
effect is not included in the ideal calculation~ii !. The en-
hanced ionization probability in the low-energy domain~see
Fig. 1! leads also to an enhancement in the stopping po
for low beam velocities.

Figure 4 shows the total stopping power of a partia
ionized hydrogen plasma, the free electron, and the ion
tion contributions as a function of the beam particle veloc
Again, the beam consists of protons, i.e.,Zb51. With the
given plasma parameters, ionization degrees ofa50.49 and
a50.19 were obtained for the upper and lower figure,
spectively. The molecule concentration is here again un
1%. Due to the fact that ionization requires a minimum im
pact energy, it is expected that the free electron contribu

FIG. 4. Stopping power of a partially ionized hydrogen plasm
for a proton beam versus beam particle velocity~in units of the
thermal velocity of the electron componentv th5AkBT/me!. The
plasma temperature and total electron density areT52.03104 K
(T53.53104 K) and ne

tot51020 cm23 (ne
tot51021 cm23) in the up-

per ~lower! figure, respectively.
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STOPPING POWER OF NONIDEAL, PARTIALLY . . . PHYSICAL REVIEW E65 036406
is dominant for very small beam velocities, which is co
firmed by the numerical results in Fig. 4. However, our
sults show that also for beam energies where the maxim
of the stopping power occurs, the free electrons give
major contribution even if only 19% of the electron are fr
carriers ~see upper part!. This behavior is even more pro
nounced in the case where the number of free electron
approximately equal to the number of atoms. Here, the i
ization of atoms contributes only 9% at the maximum of t
total stopping power. This clearly shows that this effe
which is also known from weakly coupled plasmas, is mu
stronger in nonideal systems. The reason is that the en
transfer per collision, i.e.,I j

eff , is reduced by strong couplin
effects.

For high beam velocities, the fraction of the ionizatio
contribution becomes larger, but the contribution per bou
electron is still smaller than the one per free electron.
instance, the contribution per free electron is approxima
twice as high as the one per bound electron for a beam
ticle velocity of v5203v th . As a result, the bound stat
contribution exceeds the free electron contribution for h
velocities in the upper part of Fig. 4, but is noticeab

FIG. 5. Total stopping power~full line!, free electron contribu-
tion ~dash-dotted line!, and ionization contribution~dashed line! of
a partially ionized hydrogen plasma versus total electron den
The beam consists of protons with 1 MeV per particle. In additi
results assuming a fully ionized plasma~dotted line! are shown.
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smaller in the lower part. Such an enhancement of the s
ping power of plasmas compared to cold gases was also
served in experimental investigations of proton and deute
stopping in plasmas@65,66# and can be explained with th
different excitation energies in the corresponding hig
velocity expressions, i.e.,I j

eff in Eq. ~36! for the ionization
contribution and\vpl in Eq. ~46! for the free plasma
particles.

The density dependence of the stopping power is dem
strated in Fig. 5 for three different plasma temperatures.
drogen molecules are treated here as two~independent! at-
oms. The beam particles are protons with 1 MeV ener
Therefore, the high-velocity formula~36! can be used. To ge
a consistent description of plasma composition and stopp
power, the effective ionization energy according to the mo
~49! and ~50! is used in both calculations.

In addition to the total stopping power, the free electr
and the ionization contributions are plotted. Furthermore,
sults for the stopping power assuming a fully ionized plas
are given for comparison. Due to the increasing number
both free and bound electrons with increasing total elect
density, both contributions become larger in the low-dens
range. For very low densities, the plasma is approxima
fully ionized. Therefore, the contribution of the bound ele
trons increases stronger due to the formation of atoms in
plasma with increasing density. As a result, a density reg
exists for T51.53104 K and T52.53104 K, where the
stopping power due to ionization exceeds the free part
contribution. ForT53.53104 K, the fraction of bound elec-
trons is always too small to give a larger contribution th
the free electrons.

A qualitatively different behavior can be observed at de
sities aroundne

tot51023 cm23. Here, the ionization contribu
tion suddenly drops. This behavior results from the simu
neous occurrence of two effects that both reduce
contribution. The first one is the lowering of the ionizatio
energy that becomes significant in this region and redu
the energy transfer per collision. As the ionization ene
also affects the plasma composition, second, the ioniza
degree increases rapidly. At the same density, the free e
tron contribution shows a strong increase because of
higher fraction of free electrons. As the free electrons giv
higher contribution per particle than the bound electrons,
total stopping power shows a strong effective increase at
density, too. As we can see from the plasma composition~see
Fig. 2!, we observe here the transition from a partially io
ized to a fully ionized plasma~Mott transition!. The influ-
ence of this phenomenon on the stopping power of parti
ionized plasmas is demonstrated here for a hydrogen plas

B. Stopping power of carbon and argon plasmas

For plasmas of elements other than hydrogen, one ha
account for ions in different charge states. Consequentl
follows a set of coupled mass action laws for all possi
charge states. In the nondegenerate case, we get inste
Eq. ~48!,

y.
,
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nZ

nenZ11
5Le

3 gZ

gZ11
exp~bI Z

eff!. ~51!

Here,nZ is the number density of ions in the charge stateZ
and gZ denotes the statistical weight. For the effective io
ization energyI Z

eff , we apply here a model proposed by Ste
art and Pyatt@67# because of its numerical simplicity an
proven good results for intermediate and high plasma t
peratures@68#. This scheme smoothly interpolates betwe
the Debye shifts for low densities and the ion-sphere mo
for high densities@67#. Again all atoms and ions are assum
to be in the ground state. The effective ionization energy
an ion in the charge stateZ is given in this model by

I Z
eff5uEZu2

u3~ Z̄11!K11]2/3

2~ Z̄11!
kBT. ~52!

Here, Z̄ is the average charge state of the ions, and the
rameterK is defined asK5Z̄e2k/kBT.

In the upper part of Fig. 6, results for the chemical co
position of a carbon plasma are presented as a function o
plasma temperature. Qualitatively, we find the expec
results: almost only atoms exist at low temperatures; then
ionization degree increases with the temperature. All ioni
tion stages appear and disappear at certain temperature
only sixfold ionized carbon ions exist for very high temper
tures. However, the fractions of the different ions species
influenced by correlation effects, especially in the tempe
ture range where the maximum of the C1 and the C21 ions
occurs. Here, the composition is noticeably modified co

FIG. 6. Chemical composition~upper figure! and stopping
power~lower figure! of a carbon plasma versus plasma temperatu
The total nuclear density isnc

tot51021 cm23. In the lower figure, the
stopping power is shown for different beam energies~velocities!.
The beam particle is a heavy ion with a charge state ofZb510.
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pared to an ideal calculation. Furthermore, we want to po
out that the very stable configuration of the~heliumlike! C41

ions dominates in a large temperature range. These pla
temperatures are of special interest to describe beam-pla
interaction experiments where C41 ions were also detecte
spectroscopically@29#.

The influence of the chemical composition on the sto
ping power of a carbon plasma is demonstrated in the lo
part of Fig. 6 for fast beam ions~1, 2, 3, 4, 5, and 6 MeV per
nucleon beam energy!. Obviously, the stopping power in
creases with the plasma temperature~or the ionization de-
gree!. This increase is again explained by the fact that
free electrons give a higher contribution per electron than
bound ones. As this different behavior is more pronounce
lower beam velocities, we observe a stronger increase in
case. A remarkable increase occurs for temperatures aro
T510 eV where the ionization degree changes more rapi
This range is then followed by plateaulike region fromT
'15 eV toT'40 eV, which is a direct effect of the stabl
heliumlike configuration resulting in an almost constant io
ization degree.

A comparison of our theoretical predictions with expe
mental results is given in Fig. 7, where data for the ene
loss of 238U ions traveling through a 20 cm long, partiall
ionized argon plasma are shown@8,69#. The plasma was pro
duced using aZ pinch with a pinch-axis parallel to the bea
direction. The lack in the experimental data is due to
strong reduction of the output beam intensity, which is
effect of the strong focusing force of the plasma curre
~plasma lens effect! @70#. It was shown experimentally tha
the beam ion charge number remains almost cons
aroundZb553. The beam particle energy is 6.3 MeV p
nucleon that justifies the application of the high-energy f
mulas ~37! and ~46!. However, it should be mentioned tha
strong fields can influence the stopping power due to the
electrons~see, e.g., Refs.@71,72# for magnetic fields!.

The densities of the free electrons were taken from tim
resolved spectroscopy measurements and are in the ran
ne51018– 1019 cm23. Assuming a plasma temperature ofT
5105 K, the ~time dependent! total nuclear densities ar
then calculated from the solution of the set of Saha equat
~51!. This calculation does not include the effects of elect

.

FIG. 7. Energy loss of a238U531 ions with a beam energy of 6.3
MeV per nucleon traveling through a 20 cm long, partially ioniz
argon plasma. The theoretical result is plotted as a full line. T
circles show experimental results taken from Ref.@69#.
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magnetic fields and also neglects the heating and coolin
the plasma during the pinch and the relaxation phases
spectively. It should be mentioned that a considerable
crease of the ionization degree due to electric fields occ
in the given electron density range, only for field streng
E.106 V/m @73# whereas magnetic fields tend to decrea
the ionization degree@74#. It can also be shown that the tot
stopping power is only a weak function of the plasma te
perature forT>105 K @8#. Since the average charge state
the plasma ions never exceedsZ̄55, the main contribution to
the energy loss is due to the ionization of bound electron

The comparison shows a good agreement between the
culated and the measured stopping power in the expan
phase that verifies the applicability of the high velocity res
~37! for plasmas with densities up tonc51019 cm23. The
disagreement in the compression phase is mainly due to
fact that the temperature is not constant during the disch
but strongly increases during the compression.

VI. SUMMARY

We developed a kinetic approach for the stopping pow
of partially ionized plasmas that is based on quantum kin
equation. The derived expressions are valid for arbitr
beam particle velocities. Furthermore, a generalized Be
formula for fast beam particles was derived. With this kine
approach, we were able to include all relevant types of tw
av
I.
.

l.

. A

m

s.

. A
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and three-particle collisions as well as the influence of c
relation effects. Special attention was paid to the bound s
contribution of the stopping power where ionization and e
citation of a composite plasma particles by beam part
impact were considered. In particular, the nonideality effe
on the cross sections were discussed. Then these results
used to calculate the stopping power of partially ionized h
drogen plasmas. The largest nonideality effects were fo
for low beam velocities. Especially, the threshold for the io
ization was shifted to smaller beam velocities. For fast be
particles, we found a reduction of the stopping power d
to the lowering of the ionization energy. Furthermore, w
observed the Mott transition in the stopping power for lar
densities. The effect of temperature ionization on the st
ping power was demonstrated for a carbon plasma. Fina
we have shown a comparison with experimental data for
argon plasma that proves the applicability of the Bethe-l
formula for fast ion beams.
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